3.356 \(\int \frac{x}{(2 (5-3 \sqrt{3}) a-b x^3) \sqrt{-a+b x^3}} \, dx\)

Optimal. Leaf size=320 \[ \frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \left (1-\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{b x^3-a}}\right )}{2 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt{b x^3-a}}{\sqrt{2} 3^{3/4} \sqrt{a}}\right )}{3 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \left (1+\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{b x^3-a}}\right )}{6 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \sqrt [6]{a} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{b x^3-a}}\right )}{3 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}} \]

[Out]

((2 + Sqrt[3])*ArcTan[(3^(1/4)*(1 - Sqrt[3])*a^(1/6)*(a^(1/3) - b^(1/3)*x))/(Sqrt[2]*Sqrt[-a + b*x^3])])/(2*Sq
rt[2]*3^(3/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTan[((1 + Sqrt[3])*Sqrt[-a + b*x^3])/(Sqrt[2]*3^(3/4)*Sqrt[
a])])/(3*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTanh[(3^(1/4)*(1 + Sqrt[3])*a^(1/6)*(a^(1/3) - b
^(1/3)*x))/(Sqrt[2]*Sqrt[-a + b*x^3])])/(6*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTanh[(3^(1/4)*
a^(1/6)*((1 - Sqrt[3])*a^(1/3) + 2*b^(1/3)*x))/(Sqrt[2]*Sqrt[-a + b*x^3])])/(3*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)
)

________________________________________________________________________________________

Rubi [A]  time = 0.0532115, antiderivative size = 320, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.028, Rules used = {488} \[ \frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \left (1-\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{b x^3-a}}\right )}{2 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt{b x^3-a}}{\sqrt{2} 3^{3/4} \sqrt{a}}\right )}{3 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \left (1+\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{b x^3-a}}\right )}{6 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \sqrt [6]{a} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{b x^3-a}}\right )}{3 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}} \]

Antiderivative was successfully verified.

[In]

Int[x/((2*(5 - 3*Sqrt[3])*a - b*x^3)*Sqrt[-a + b*x^3]),x]

[Out]

((2 + Sqrt[3])*ArcTan[(3^(1/4)*(1 - Sqrt[3])*a^(1/6)*(a^(1/3) - b^(1/3)*x))/(Sqrt[2]*Sqrt[-a + b*x^3])])/(2*Sq
rt[2]*3^(3/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTan[((1 + Sqrt[3])*Sqrt[-a + b*x^3])/(Sqrt[2]*3^(3/4)*Sqrt[
a])])/(3*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTanh[(3^(1/4)*(1 + Sqrt[3])*a^(1/6)*(a^(1/3) - b
^(1/3)*x))/(Sqrt[2]*Sqrt[-a + b*x^3])])/(6*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) - ((2 + Sqrt[3])*ArcTanh[(3^(1/4)*
a^(1/6)*((1 - Sqrt[3])*a^(1/3) + 2*b^(1/3)*x))/(Sqrt[2]*Sqrt[-a + b*x^3])])/(3*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)
)

Rule 488

Int[(x_)/(Sqrt[(a_) + (b_.)*(x_)^3]*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[b/a, 3], r = Simplify[(b
*c - 10*a*d)/(6*a*d)]}, Simp[(q*(2 - r)*ArcTanh[((1 - r)*Sqrt[a + b*x^3])/(Sqrt[2]*Rt[-a, 2]*r^(3/2))])/(3*Sqr
t[2]*Rt[-a, 2]*d*r^(3/2)), x] + (-Simp[(q*(2 - r)*ArcTanh[(Rt[-a, 2]*Sqrt[r]*(1 + r)*(1 + q*x))/(Sqrt[2]*Sqrt[
a + b*x^3])])/(2*Sqrt[2]*Rt[-a, 2]*d*r^(3/2)), x] - Simp[(q*(2 - r)*ArcTan[(Rt[-a, 2]*Sqrt[r]*(1 + r - 2*q*x))
/(Sqrt[2]*Sqrt[a + b*x^3])])/(3*Sqrt[2]*Rt[-a, 2]*d*Sqrt[r]), x] - Simp[(q*(2 - r)*ArcTan[(Rt[-a, 2]*(1 - r)*S
qrt[r]*(1 + q*x))/(Sqrt[2]*Sqrt[a + b*x^3])])/(6*Sqrt[2]*Rt[-a, 2]*d*Sqrt[r]), x])] /; FreeQ[{a, b, c, d}, x]
&& NeQ[b*c - a*d, 0] && EqQ[b^2*c^2 - 20*a*b*c*d - 8*a^2*d^2, 0] && NegQ[a]

Rubi steps

\begin{align*} \int \frac{x}{\left (2 \left (5-3 \sqrt{3}\right ) a-b x^3\right ) \sqrt{-a+b x^3}} \, dx &=\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{3} \left (1-\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{-a+b x^3}}\right )}{2 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tan ^{-1}\left (\frac{\left (1+\sqrt{3}\right ) \sqrt{-a+b x^3}}{\sqrt{2} 3^{3/4} \sqrt{a}}\right )}{3 \sqrt{2} 3^{3/4} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \left (1+\sqrt{3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{-a+b x^3}}\right )}{6 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac{\left (2+\sqrt{3}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{3} \sqrt [6]{a} \left (\left (1-\sqrt{3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt{2} \sqrt{-a+b x^3}}\right )}{3 \sqrt{2} \sqrt [4]{3} a^{5/6} b^{2/3}}\\ \end{align*}

Mathematica [C]  time = 0.0658154, size = 84, normalized size = 0.26 \[ \frac{x^2 \sqrt{1-\frac{b x^3}{a}} F_1\left (\frac{2}{3};\frac{1}{2},1;\frac{5}{3};\frac{b x^3}{a},\frac{b x^3}{10 a-6 \sqrt{3} a}\right )}{\left (20 a-12 \sqrt{3} a\right ) \sqrt{b x^3-a}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/((2*(5 - 3*Sqrt[3])*a - b*x^3)*Sqrt[-a + b*x^3]),x]

[Out]

(x^2*Sqrt[1 - (b*x^3)/a]*AppellF1[2/3, 1/2, 1, 5/3, (b*x^3)/a, (b*x^3)/(10*a - 6*Sqrt[3]*a)])/((20*a - 12*Sqrt
[3]*a)*Sqrt[-a + b*x^3])

________________________________________________________________________________________

Maple [C]  time = 0.06, size = 510, normalized size = 1.6 \begin{align*}{\frac{-{\frac{i}{27}}\sqrt{2}}{a{b}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+6\,a\sqrt{3}-10\,a \right ) }{\frac{1}{{\it \_alpha}}\sqrt [3]{a{b}^{2}}\sqrt{{-{\frac{i}{2}}b \left ( 2\,x+{\frac{1}{b} \left ( i\sqrt{3}\sqrt [3]{a{b}^{2}}+\sqrt [3]{a{b}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{a{b}^{2}}}}}}\sqrt{{b \left ( x-{\frac{1}{b}\sqrt [3]{a{b}^{2}}} \right ) \left ( -3\,\sqrt [3]{a{b}^{2}}-i\sqrt{3}\sqrt [3]{a{b}^{2}} \right ) ^{-1}}}\sqrt{{{\frac{i}{2}}b \left ( 2\,x+{\frac{1}{b} \left ( -i\sqrt{3}\sqrt [3]{a{b}^{2}}+\sqrt [3]{a{b}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{a{b}^{2}}}}}} \left ( -3\,i\sqrt [3]{a{b}^{2}}{\it \_alpha}\,\sqrt{3}b+4\,{b}^{2}{{\it \_alpha}}^{2}\sqrt{3}+3\,i \left ( a{b}^{2} \right ) ^{{\frac{2}{3}}}\sqrt{3}-2\,\sqrt{3}\sqrt [3]{a{b}^{2}}{\it \_alpha}\,b-6\,i\sqrt [3]{a{b}^{2}}{\it \_alpha}\,b+6\,{b}^{2}{{\it \_alpha}}^{2}-2\,\sqrt{3} \left ( a{b}^{2} \right ) ^{2/3}+6\,i \left ( a{b}^{2} \right ) ^{{\frac{2}{3}}}-3\,\sqrt [3]{a{b}^{2}}{\it \_alpha}\,b-3\, \left ( a{b}^{2} \right ) ^{2/3} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{-i\sqrt{3}b \left ( x+{\frac{1}{2\,b}\sqrt [3]{a{b}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{a{b}^{2}}} \right ){\frac{1}{\sqrt [3]{a{b}^{2}}}}}}},{\frac{1}{6\,ab} \left ( -2\,i\sqrt{3}\sqrt [3]{a{b}^{2}}{{\it \_alpha}}^{2}b+i\sqrt{3} \left ( a{b}^{2} \right ) ^{{\frac{2}{3}}}{\it \_alpha}-4\,i\sqrt [3]{a{b}^{2}}{{\it \_alpha}}^{2}b-2\,\sqrt{3} \left ( a{b}^{2} \right ) ^{2/3}{\it \_alpha}+i\sqrt{3}ab+2\,i \left ( a{b}^{2} \right ) ^{{\frac{2}{3}}}{\it \_alpha}+2\,\sqrt{3}ab-3\, \left ( a{b}^{2} \right ) ^{2/3}{\it \_alpha}+2\,iab+3\,ab \right ) },\sqrt{{\frac{-i\sqrt{3}}{b}\sqrt [3]{a{b}^{2}} \left ( -{\frac{3}{2\,b}\sqrt [3]{a{b}^{2}}}-{\frac{{\frac{i}{2}}\sqrt{3}}{b}\sqrt [3]{a{b}^{2}}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{b{x}^{3}-a}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(-b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3-a)^(1/2),x)

[Out]

-1/27*I/b^3/a*2^(1/2)*sum(1/_alpha*(a*b^2)^(1/3)*(-1/2*I*b*(2*x+1/b*(I*3^(1/2)*(a*b^2)^(1/3)+(a*b^2)^(1/3)))/(
a*b^2)^(1/3))^(1/2)*(b*(x-1/b*(a*b^2)^(1/3))/(-3*(a*b^2)^(1/3)-I*3^(1/2)*(a*b^2)^(1/3)))^(1/2)*(1/2*I*b*(2*x+1
/b*(-I*3^(1/2)*(a*b^2)^(1/3)+(a*b^2)^(1/3)))/(a*b^2)^(1/3))^(1/2)/(b*x^3-a)^(1/2)*(-3*I*(a*b^2)^(1/3)*_alpha*3
^(1/2)*b+4*b^2*_alpha^2*3^(1/2)+3*I*(a*b^2)^(2/3)*3^(1/2)-2*3^(1/2)*(a*b^2)^(1/3)*_alpha*b-6*I*(a*b^2)^(1/3)*_
alpha*b+6*b^2*_alpha^2-2*3^(1/2)*(a*b^2)^(2/3)+6*I*(a*b^2)^(2/3)-3*(a*b^2)^(1/3)*_alpha*b-3*(a*b^2)^(2/3))*Ell
ipticPi(1/3*3^(1/2)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2),1
/6/b*(-2*I*3^(1/2)*(a*b^2)^(1/3)*_alpha^2*b+I*3^(1/2)*(a*b^2)^(2/3)*_alpha-4*I*(a*b^2)^(1/3)*_alpha^2*b-2*3^(1
/2)*(a*b^2)^(2/3)*_alpha+I*3^(1/2)*a*b+2*I*(a*b^2)^(2/3)*_alpha+2*3^(1/2)*a*b-3*(a*b^2)^(2/3)*_alpha+2*I*a*b+3
*a*b)/a,(-I*3^(1/2)/b*(a*b^2)^(1/3)/(-3/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2)),_alpha=RootOf
(b*_Z^3+6*a*3^(1/2)-10*a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x}{{\left (b x^{3} + 2 \, a{\left (3 \, \sqrt{3} - 5\right )}\right )} \sqrt{b x^{3} - a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3-a)^(1/2),x, algorithm="maxima")

[Out]

-integrate(x/((b*x^3 + 2*a*(3*sqrt(3) - 5))*sqrt(b*x^3 - a)), x)

________________________________________________________________________________________

Fricas [B]  time = 90.6997, size = 12766, normalized size = 39.89 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3-a)^(1/2),x, algorithm="fricas")

[Out]

-1/6*sqrt(3)*(1/1944)^(1/6)*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)*arctan(1/3*(3*sqrt(b*x^3 - a)*(108*(1/194
4)^(5/6)*(265*a^4*b^4*x^3 - 1978*a^5*b^3 - sqrt(3)*(153*a^4*b^4*x^3 - 1142*a^5*b^3))*(-(1351*sqrt(3) + 2340)/(
a^5*b^4))^(5/6) + sqrt(1/6)*(41*sqrt(3)*a^3*b^2*x - 71*a^3*b^2*x)*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) + (1/
1944)^(1/6)*(5*sqrt(3)*a*b*x^2 - 9*a*b*x^2)*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)) - (6*(1/9)^(1/3)*(7*a^2*
b^2*x^3 - 7*a^3*b - 4*sqrt(3)*(a^2*b^2*x^3 - a^3*b))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/3) - sqrt(3)*(b*x^4
 - a*x) + 3*sqrt(b*x^3 - a)*(108*(1/1944)^(5/6)*(265*a^4*b^4*x^3 + 1448*a^5*b^3 - sqrt(3)*(153*a^4*b^4*x^3 + 8
36*a^5*b^3))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(5/6) - sqrt(1/6)*(41*sqrt(3)*a^3*b^2*x - 71*a^3*b^2*x)*sqrt(-
(1351*sqrt(3) + 2340)/(a^5*b^4)) - (1/1944)^(1/6)*(5*sqrt(3)*a*b*x^2 - 9*a*b*x^2)*(-(1351*sqrt(3) + 2340)/(a^5
*b^4))^(1/6)))*sqrt((b^4*x^12 - 100*a*b^3*x^9 + 240*a^2*b^2*x^6 - 832*a^3*b*x^3 + 448*a^4 - 6*(1/9)^(2/3)*(154
5*a^4*b^6*x^10 - 12492*a^5*b^5*x^7 - 10512*a^6*b^4*x^4 - 2112*a^7*b^3*x - 4*sqrt(3)*(223*a^4*b^6*x^10 - 1803*a
^5*b^5*x^7 - 1518*a^6*b^4*x^4 - 304*a^7*b^3*x))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(2/3) + 6*(1/9)^(1/3)*(26*a
^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5 + 64*a^5*b^2*x^2 - 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8
+ 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/3) + 32*sqrt(3)*(a*b^3*x^9 + 6*a^2*b
^2*x^6 - 15*a^3*b*x^3 + 8*a^4) + 2*sqrt(b*x^3 - a)*(1944*(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5*x^5 +
 568*a^7*b^4*x^2 - sqrt(3)*(2131*a^5*b^6*x^8 + 1672*a^6*b^5*x^5 + 328*a^7*b^4*x^2))*(-(1351*sqrt(3) + 2340)/(a
^5*b^4))^(5/6) - 2*sqrt(1/6)*(123*a^3*b^5*x^9 + 5112*a^4*b^4*x^6 + 3960*a^5*b^3*x^3 + 768*a^6*b^2 - sqrt(3)*(7
1*a^3*b^5*x^9 + 2952*a^4*b^4*x^6 + 2280*a^5*b^3*x^3 + 448*a^6*b^2))*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) - 3
*(1/1944)^(1/6)*(5*a*b^4*x^10 - 12*a^2*b^3*x^7 - 72*a^3*b^2*x^4 + 160*a^4*b*x - 3*sqrt(3)*(a*b^4*x^10 - 4*a^2*
b^3*x^7 + 8*a^3*b^2*x^4 - 32*a^4*b*x))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)))/(b^4*x^12 - 40*a*b^3*x^9 + 3
84*a^2*b^2*x^6 + 320*a^3*b*x^3 + 64*a^4)))/(b*x^4 - a*x)) - 1/6*sqrt(3)*(1/1944)^(1/6)*(-(1351*sqrt(3) + 2340)
/(a^5*b^4))^(1/6)*arctan(1/3*(3*sqrt(b*x^3 - a)*(108*(1/1944)^(5/6)*(265*a^4*b^4*x^3 - 1978*a^5*b^3 - sqrt(3)*
(153*a^4*b^4*x^3 - 1142*a^5*b^3))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(5/6) + sqrt(1/6)*(41*sqrt(3)*a^3*b^2*x -
 71*a^3*b^2*x)*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) + (1/1944)^(1/6)*(5*sqrt(3)*a*b*x^2 - 9*a*b*x^2)*(-(1351
*sqrt(3) + 2340)/(a^5*b^4))^(1/6)) + (6*(1/9)^(1/3)*(7*a^2*b^2*x^3 - 7*a^3*b - 4*sqrt(3)*(a^2*b^2*x^3 - a^3*b)
)*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/3) - sqrt(3)*(b*x^4 - a*x) - 3*sqrt(b*x^3 - a)*(108*(1/1944)^(5/6)*(26
5*a^4*b^4*x^3 + 1448*a^5*b^3 - sqrt(3)*(153*a^4*b^4*x^3 + 836*a^5*b^3))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(5/
6) - sqrt(1/6)*(41*sqrt(3)*a^3*b^2*x - 71*a^3*b^2*x)*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) - (1/1944)^(1/6)*(
5*sqrt(3)*a*b*x^2 - 9*a*b*x^2)*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)))*sqrt((b^4*x^12 - 100*a*b^3*x^9 + 240
*a^2*b^2*x^6 - 832*a^3*b*x^3 + 448*a^4 - 6*(1/9)^(2/3)*(1545*a^4*b^6*x^10 - 12492*a^5*b^5*x^7 - 10512*a^6*b^4*
x^4 - 2112*a^7*b^3*x - 4*sqrt(3)*(223*a^4*b^6*x^10 - 1803*a^5*b^5*x^7 - 1518*a^6*b^4*x^4 - 304*a^7*b^3*x))*(-(
1351*sqrt(3) + 2340)/(a^5*b^4))^(2/3) + 6*(1/9)^(1/3)*(26*a^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5 + 6
4*a^5*b^2*x^2 - 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8 + 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqrt(3)
 + 2340)/(a^5*b^4))^(1/3) + 32*sqrt(3)*(a*b^3*x^9 + 6*a^2*b^2*x^6 - 15*a^3*b*x^3 + 8*a^4) - 2*sqrt(b*x^3 - a)*
(1944*(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5*x^5 + 568*a^7*b^4*x^2 - sqrt(3)*(2131*a^5*b^6*x^8 + 1672
*a^6*b^5*x^5 + 328*a^7*b^4*x^2))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(5/6) - 2*sqrt(1/6)*(123*a^3*b^5*x^9 + 511
2*a^4*b^4*x^6 + 3960*a^5*b^3*x^3 + 768*a^6*b^2 - sqrt(3)*(71*a^3*b^5*x^9 + 2952*a^4*b^4*x^6 + 2280*a^5*b^3*x^3
 + 448*a^6*b^2))*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) - 3*(1/1944)^(1/6)*(5*a*b^4*x^10 - 12*a^2*b^3*x^7 - 72
*a^3*b^2*x^4 + 160*a^4*b*x - 3*sqrt(3)*(a*b^4*x^10 - 4*a^2*b^3*x^7 + 8*a^3*b^2*x^4 - 32*a^4*b*x))*(-(1351*sqrt
(3) + 2340)/(a^5*b^4))^(1/6)))/(b^4*x^12 - 40*a*b^3*x^9 + 384*a^2*b^2*x^6 + 320*a^3*b*x^3 + 64*a^4)))/(b*x^4 -
 a*x)) + 1/12*(1/1944)^(1/6)*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)*log((b^4*x^12 + 68*a*b^3*x^9 + 168*a^2*b
^2*x^6 - 544*a^3*b*x^3 + 64*a^4 + 6*(1/9)^(2/3)*(2799*a^4*b^6*x^10 + 11556*a^5*b^5*x^7 + 7776*a^6*b^4*x^4 + 14
40*a^7*b^3*x - 8*sqrt(3)*(202*a^4*b^6*x^10 + 834*a^5*b^5*x^7 + 561*a^6*b^4*x^4 + 104*a^7*b^3*x))*(-(1351*sqrt(
3) + 2340)/(a^5*b^4))^(2/3) + 6*(1/9)^(1/3)*(26*a^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5 + 64*a^5*b^2*
x^2 - 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8 + 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqrt(3) + 2340)/(
a^5*b^4))^(1/3) - 64*sqrt(3)*(a*b^3*x^9 - 3*a^2*b^2*x^6 + 3*a^3*b*x^3 - a^4) + 2*sqrt(b*x^3 - a)*(1944*(1/1944
)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5*x^5 + 568*a^7*b^4*x^2 - sqrt(3)*(2131*a^5*b^6*x^8 + 1672*a^6*b^5*x^5
+ 328*a^7*b^4*x^2))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(5/6) + 4*sqrt(1/6)*(168*a^3*b^5*x^9 + 1845*a^4*b^4*x^6
 + 1368*a^5*b^3*x^3 + 264*a^6*b^2 - sqrt(3)*(97*a^3*b^5*x^9 + 1065*a^4*b^4*x^6 + 792*a^5*b^3*x^3 + 152*a^6*b^2
))*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) + 3*(1/1944)^(1/6)*(5*a*b^4*x^10 + 216*a^2*b^3*x^7 + 120*a^3*b^2*x^4
 + 64*a^4*b*x - 3*sqrt(3)*(a*b^4*x^10 + 40*a^2*b^3*x^7 + 40*a^3*b^2*x^4))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(
1/6)))/(b^4*x^12 - 40*a*b^3*x^9 + 384*a^2*b^2*x^6 + 320*a^3*b*x^3 + 64*a^4)) - 1/12*(1/1944)^(1/6)*(-(1351*sqr
t(3) + 2340)/(a^5*b^4))^(1/6)*log((b^4*x^12 + 68*a*b^3*x^9 + 168*a^2*b^2*x^6 - 544*a^3*b*x^3 + 64*a^4 + 6*(1/9
)^(2/3)*(2799*a^4*b^6*x^10 + 11556*a^5*b^5*x^7 + 7776*a^6*b^4*x^4 + 1440*a^7*b^3*x - 8*sqrt(3)*(202*a^4*b^6*x^
10 + 834*a^5*b^5*x^7 + 561*a^6*b^4*x^4 + 104*a^7*b^3*x))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(2/3) + 6*(1/9)^(1
/3)*(26*a^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5 + 64*a^5*b^2*x^2 - 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3
*b^4*x^8 + 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/3) - 64*sqrt(3)*(a*b^3*x^9
- 3*a^2*b^2*x^6 + 3*a^3*b*x^3 - a^4) - 2*sqrt(b*x^3 - a)*(1944*(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5
*x^5 + 568*a^7*b^4*x^2 - sqrt(3)*(2131*a^5*b^6*x^8 + 1672*a^6*b^5*x^5 + 328*a^7*b^4*x^2))*(-(1351*sqrt(3) + 23
40)/(a^5*b^4))^(5/6) + 4*sqrt(1/6)*(168*a^3*b^5*x^9 + 1845*a^4*b^4*x^6 + 1368*a^5*b^3*x^3 + 264*a^6*b^2 - sqrt
(3)*(97*a^3*b^5*x^9 + 1065*a^4*b^4*x^6 + 792*a^5*b^3*x^3 + 152*a^6*b^2))*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)
) + 3*(1/1944)^(1/6)*(5*a*b^4*x^10 + 216*a^2*b^3*x^7 + 120*a^3*b^2*x^4 + 64*a^4*b*x - 3*sqrt(3)*(a*b^4*x^10 +
40*a^2*b^3*x^7 + 40*a^3*b^2*x^4))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)))/(b^4*x^12 - 40*a*b^3*x^9 + 384*a^
2*b^2*x^6 + 320*a^3*b*x^3 + 64*a^4)) - 1/24*(1/1944)^(1/6)*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)*log((b^4*x
^12 - 100*a*b^3*x^9 + 240*a^2*b^2*x^6 - 832*a^3*b*x^3 + 448*a^4 - 6*(1/9)^(2/3)*(1545*a^4*b^6*x^10 - 12492*a^5
*b^5*x^7 - 10512*a^6*b^4*x^4 - 2112*a^7*b^3*x - 4*sqrt(3)*(223*a^4*b^6*x^10 - 1803*a^5*b^5*x^7 - 1518*a^6*b^4*
x^4 - 304*a^7*b^3*x))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(2/3) + 6*(1/9)^(1/3)*(26*a^2*b^5*x^11 + 498*a^3*b^4*
x^8 + 384*a^4*b^3*x^5 + 64*a^5*b^2*x^2 - 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8 + 72*a^4*b^3*x^5 + 16*a^5*
b^2*x^2))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/3) + 32*sqrt(3)*(a*b^3*x^9 + 6*a^2*b^2*x^6 - 15*a^3*b*x^3 + 8*
a^4) + 2*sqrt(b*x^3 - a)*(1944*(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5*x^5 + 568*a^7*b^4*x^2 - sqrt(3)
*(2131*a^5*b^6*x^8 + 1672*a^6*b^5*x^5 + 328*a^7*b^4*x^2))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(5/6) - 2*sqrt(1/
6)*(123*a^3*b^5*x^9 + 5112*a^4*b^4*x^6 + 3960*a^5*b^3*x^3 + 768*a^6*b^2 - sqrt(3)*(71*a^3*b^5*x^9 + 2952*a^4*b
^4*x^6 + 2280*a^5*b^3*x^3 + 448*a^6*b^2))*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) - 3*(1/1944)^(1/6)*(5*a*b^4*x
^10 - 12*a^2*b^3*x^7 - 72*a^3*b^2*x^4 + 160*a^4*b*x - 3*sqrt(3)*(a*b^4*x^10 - 4*a^2*b^3*x^7 + 8*a^3*b^2*x^4 -
32*a^4*b*x))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)))/(b^4*x^12 - 40*a*b^3*x^9 + 384*a^2*b^2*x^6 + 320*a^3*b
*x^3 + 64*a^4)) + 1/24*(1/1944)^(1/6)*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(1/6)*log((b^4*x^12 - 100*a*b^3*x^9 +
 240*a^2*b^2*x^6 - 832*a^3*b*x^3 + 448*a^4 - 6*(1/9)^(2/3)*(1545*a^4*b^6*x^10 - 12492*a^5*b^5*x^7 - 10512*a^6*
b^4*x^4 - 2112*a^7*b^3*x - 4*sqrt(3)*(223*a^4*b^6*x^10 - 1803*a^5*b^5*x^7 - 1518*a^6*b^4*x^4 - 304*a^7*b^3*x))
*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(2/3) + 6*(1/9)^(1/3)*(26*a^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5
 + 64*a^5*b^2*x^2 - 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8 + 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqr
t(3) + 2340)/(a^5*b^4))^(1/3) + 32*sqrt(3)*(a*b^3*x^9 + 6*a^2*b^2*x^6 - 15*a^3*b*x^3 + 8*a^4) - 2*sqrt(b*x^3 -
 a)*(1944*(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5*x^5 + 568*a^7*b^4*x^2 - sqrt(3)*(2131*a^5*b^6*x^8 +
1672*a^6*b^5*x^5 + 328*a^7*b^4*x^2))*(-(1351*sqrt(3) + 2340)/(a^5*b^4))^(5/6) - 2*sqrt(1/6)*(123*a^3*b^5*x^9 +
 5112*a^4*b^4*x^6 + 3960*a^5*b^3*x^3 + 768*a^6*b^2 - sqrt(3)*(71*a^3*b^5*x^9 + 2952*a^4*b^4*x^6 + 2280*a^5*b^3
*x^3 + 448*a^6*b^2))*sqrt(-(1351*sqrt(3) + 2340)/(a^5*b^4)) - 3*(1/1944)^(1/6)*(5*a*b^4*x^10 - 12*a^2*b^3*x^7
- 72*a^3*b^2*x^4 + 160*a^4*b*x - 3*sqrt(3)*(a*b^4*x^10 - 4*a^2*b^3*x^7 + 8*a^3*b^2*x^4 - 32*a^4*b*x))*(-(1351*
sqrt(3) + 2340)/(a^5*b^4))^(1/6)))/(b^4*x^12 - 40*a*b^3*x^9 + 384*a^2*b^2*x^6 + 320*a^3*b*x^3 + 64*a^4))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x}{- 10 a \sqrt{- a + b x^{3}} + 6 \sqrt{3} a \sqrt{- a + b x^{3}} + b x^{3} \sqrt{- a + b x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x**3+2*a*(5-3*3**(1/2)))/(b*x**3-a)**(1/2),x)

[Out]

-Integral(x/(-10*a*sqrt(-a + b*x**3) + 6*sqrt(3)*a*sqrt(-a + b*x**3) + b*x**3*sqrt(-a + b*x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x^3+2*a*(5-3*3^(1/2)))/(b*x^3-a)^(1/2),x, algorithm="giac")

[Out]

sage0*x